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Abstract 

The generation of tables of CSL's in the cubic system is 
presented with three parameters giving easy and rapid 
access to all the significant data characterizing a CSL" 
it is given by the rotation matrix from which the 
rotation axis and the rotation angle are easily deter- 
mined. A method for the experimental determination of 
a CSL is presented, based on this new formulation. 

1. Introduction 

Two identical crystal lattices related by a special 
rotation operation (defined by an axis [uvw] and an 
angle 0) may have certain common sites located on a 
single lattice of larger cell dimension (Ranganathan, 
1966). This larger lattice is called the coincidence site 
lattice (CSL). The volume ratio of the primitive cells of 
the CSL and the crystal lattice is called the multiplicity 
Z' (Warrington & Bufalini, 1971). CSL's are of 
importance in connection with the study of grain 
boundaries. It is an extension of the concept of 
twinning. This paper will more specifically be devoted 
to the determination of these special rotation operations 
describing a CSL and their symmetrically equivalent 
descriptions. This information is included in the 
rotation matrix. The properties of that matrix (Grim- 
mer, Bollmann & Warrington, 1974) will be exten- 
sively used for the establishment of a new simple 
formulation of that well-known matrix. This is a useful 
tool for the rapid establishment of extended tables of 
CSL's. It will be applied to other systems in future 
work. 

Ranganathan (1966) proposed the following 
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relationships between the variables uvw in the cubic 
system" 

tan(0/2) =y- (u 2 + v 2 + w2) u2 (1) 
x 

and 

2 ? =  x 2 + (u 2 + v 2 + w2) y 2, (2) 

= a 2 + b 2 + C 2 + d 2. (3) 

Grimmer (1974) also discussed the possibility of 
different or equivalent descriptions of a CSL and 
showed that there are 242x 2 possible 'cubically 
equivalent' descriptions of a particular CSL. 

Warrington & Bufalini (1971) proposed another 
method for the generation of a CSL. According to 
them, the rotation matrix describing a CSL has the 
form 

1 
R = - - [ r i f  t ,  (4) 27 

where Z' is the multiplicity and r u are integers without a 
common divisor. The column vector (Q1/27, q2/27, 
rt3/,Y,) forms a unitary orthonormal basis. 

The general procedure for the generation of the 
CSL's is therefore the following: 

(a) determine for every ~r all the lattice vectors of 
length 2?; 

(b) from these, choose all the possible orthonormal 
bases; 

(c) finally, eliminate the bases for which the numbers 
r u have a common divisor. 

With the same basic arguments, the last method was 
extended to the hexagonal system by Warrington 
(1975) and CSL rotation axes-rotation angles have 
been given for c/a = V/-ff/3. It was similarly used by 
Grimmer, Bollmann & Warrington (1974) for the 
determination of the CSL and the DSC lattice. 

© 1981 International Union of Crystallography 

where x, y are integers. 
As a consequence, Grimmer (1973) showed that all 

the CSL's in the cubic system can be deduced from all 
different decompositions of the multiplicity Z' into a 
sum of the squares of four integers" 
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Ranganathan 's  formula gives a simple and fast 
criterion for the determination of the existence of a 
CSL for a given axis or a given Z. Grimmer 's  method 
has the advantage of being a more systematic method 
for the generation and description of all CSL's for the 
cubic system. Moreover, as far as we know, there is no 
extension of the two theories to another system. 

It is the purpose of this paper to give the principles of 
a method for the generation of all possible CSL's for 
the cubic system, based on properties of integer 
numbers. The expression of the rotation matrix will be 
given, from which the other data may be deduced. The 
main advantage of this formulation is that the correla- 
tion of Ranganathan 's  formulas and Warrington's 
approach will be given with firstly a better insight into 
the properties of formulas (2) and (4) and secondly the 
obvious possibility of  the extension to other systems. 

2. The rotation matrix describing a CSL 

Any rigid body displacement leaving one point fixed is 
described by a rotation of an angle 0 around an axis 
with direction cosines p~, P2, P3 (Euler's theorem). The 
rotation matrix is of the form 

R =  

m 

p2(l  -- cos O) pip2(1 - cos O) pip3(1 -- cos 0)-  

+ cos 0 -- P3 sin 0 + P2 sin 0 
- i  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

p2pt(1 -- cos O) p22(1 -- cos O) pzp3(1 -- COS O) 

+P3 sin 0 + cos 0 - -p t  sin 0 
. . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  

P3P,(I -cos O) p3P2(1-cos O) -pT('l'-_cos-O-)--- 
- P2 sin 0 + p~ sin 0 + cos 0 

(5) 
where p~ + p~ + p] = 1. 

Expressing the rotation axis with its Miller indices u, 
v, w, one has 

u v w 

P l - -  v / d  P 2 - -  v / - d  P 3 =  3 ¢ ~  d = u 2 +  v2+ W2, 

(6) 

with 

1 
R = [Rul  = .-~ [rul 

- -  22 
u 2 -  (1 - cos 0) 

d 

+ Z cos 0 

27 
uv (1 - cos O) 

1 5 

Z' 27 - 
uv - -  (I - cos 0) u w - -  (1 - cos 0) 

d d 

27 27 
- w - - ~  sin 0 + v - ~  sin 0 

. . . . . . . . . . . . . . . . . .  - .1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

27 
+ w - - - :  sin 0 

v'd 

Z 
v 2 - -  (1 - cos O) 

d 

+ 27 cos 0 

Z 
vw -7 (1 - cos O) 

d 

27 
- u ---= sin 0 v,'a 

. 1  

Z 
u w - -  (1 - cos O) 

1 2 7 d  V/d - v ---= sin 0 

27 
v w - -  (1 - cos O) 

d 

27 
+ u----~ sin 0 

Va 

27 
w2-r (1 - cos O) 

a 

+ X cos O 

(8) 

The matrix (8) describes a CSL of multiplicity 2; (an 
integer) if and only if the elements r u are integers 
(Warrington, 1975). 

It is known that the Miller indices of the rotation axis 
are given according to the following relations: 

v / d ( r 3 2 -  F23 ) ~ C d ( r l 3 -  r3, ) 
U :  , V: , 

227 sin 0 2X sin 0 

V / - d ( r 2 , -  r12 ) 
w = (9) 

22' sin 0 

and the rotation angle is deduced from the trace of the 
matrix" 

S S - Z  
t r -  - 1  + 2 c o s 0  or c o s 0 - - - ,  (10) 

Z 2Z 

where S is the sum of the diagonal elements of [ru]: 

S - -  r l l  + rz2 + r33. (1 1) 

( u , v , w )  - 1" (7) 

and introducing the multiplicity 22 in agreement with 
relation (4), for a rotation describing a CSL, the 
rotation matrix (5) becomes: 

* (ql, q2, q z . . . ) - - P  means that the greatest common divisor ofqi 
(i = 1, 2 . . . .  ) is the integerp. 

3. A direct correlation of  Ranganathan's formula and 
Warrington's approach 

With the following transformations, 

- 2xyv  
c o s O - - - ,  s i n O - - - ,  (12) 
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easily deduced from Ranganathan's relations (1) and 
(2), the matrix (5) becomes 

l[2uyexe y2 2uy 2wxy 2uwy+ivx l 
FI = -  2 u 0 y  2 + 2wxy 2V2V 2 + X 2 -  dy 2 2vwy 2 -  2uxy 

Z 
2uwy 2 -- 2vxy 2vwy 2 + 2uxy 2 w 2 y  2 + x 2 - -  dy 2 

(13) 

where obviously the matrix elements obey the con- 
ditions for the matrix (4). We can see from (13) that for 
three given integers x, y and d satisfying the relation 
27 -- x 2 + y2 d, the matrix Iq is rapidly established. 
Therefore, a superficial analysis indicates that this is a 
simple procedure for the determination of all the 
rotation relationships for a given 27. It should however 
be noted that some uncertainties remain, as already 
mentioned by Ranganathan (1966): that, for example, 
erroneous determinations of multiple 27 values arise. 
Relation (13) would therefore more strictly be written 
in the form 

R = ~  - -  and 27-  (14) 
27 a ' 

where a is a possible common factor of the rtl elements. 
Up till now a particular form of the rotation matrix 

has been deduced from Ranganathan's formula. A 
different procedure will be presented later based 
exclusively on the form of the rotation matrix and on 
arithmetical properties of its elements when the rotation 
describes a CSL. This will lead to the demonstration of 
expressions similar to (13)and (14). 

4. Effect of  the symmetries on the elements of  the 
rotation matrix 

If G i are the symmetry-element rotation matrices of the 
cubic point group (see, for example, Karakostas, Bleris 
& Antonopoulos, 1979), then other descriptions [q~ of 
the same CSL are produced with the expression: 

[qi = [qGi i = 1, 2,... ,  24, (15) 

where R and Iq I are matrices of type (8). On the other 
hand, for every description [q, of type (15), a 
description of another symmetrically equivalent CSL is 
given by the expression: 

[:tnj=GjRnGf I j =  1,2 ... . .  24. (16) 

This shows that 242 symmetrically equivalent descrip- 
tions exist for a particular CSL. Since the role of lattices 
1 and 2 can be exchanged, there are actually 2 x 242 
symmetrically equivalent descriptions of a CSL (Grim- 
mer, 1974). 

Taking into account the form of the matrices [q~j, it is 
easily established, as a consequence of the form of G t, 

that the absolute values of the nine terms of all the 
matrices of symmetrically equivalent descriptions of 
CSL's in the cubic systems are all equal two by two. 

5. Rotation matrix describing a CSL for which 
0 = 180 o 

Firstly, the simplified problem of the form of a rotation 
matrix with the description for which 0 = 180 ° will be 
examined. The rotation matrix (8) for 0 =  180 ° 
becomes 

1 
[={180 : -~ -  

- -  u 

27 27 27 
2u 2 -  - 27 2uv - -  2 u w -  

d d d 

27 27 27 
2uv  - -  2v 2 -  - 27 2 v w -  

d d d 

27 27 27 
2 u w  - -  2 v w  - -  2 w  2 - -  - 27 

_ d d d _ 

(17) 

The matrix (17) describes a CSL if the rlj are all 
integers, i.e. the numbers 

27 27 27 
2 v w - - ,  2 u w - - ,  2 u v - -  (18) 

d d d 

must be integers. Since (u ,v ,w)  - 1, one has (uv ,uw ,uw)  
- 1, therefore 227 must be a multiple of d: 

227= f d  (19) 

and the rotation matrix (1 7) becomes 

R , s  o = - ~ -  fuv  f ( v  2 - d/2) f vw  . (20) 

fuw fvw f ( w  2 -  d/2) 

Since the elements of matrix (20) have no common 
divisor and taking into account the form of the 
elements rij, i 4: j ,  it is clear that f may take only the 
following values" 

f =  1 if d - -  0(mod 2) 

o r  

f = 2  i f d = l ( m o d 2 ) .  

(21) 

This proves the well-known relation (Ranganathan, 
1966; Grimmer, 1973; Karakostas et al., 1979): 

d =  u 2 + v 2 + w 2 = Xor  227. (22) 

Moreover, since the only forbidden values for Z are 
Z =  0(mod 2) (which is treated in Appendix II), and 
since it is known that forbidden values for d are of the 
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form (Internat ional  Tables f o r  X-ray  Crystallography, 6. The general form of  a rotation matrix deserlbing a 
1959) CSL 

d - 0(mod 4), 

d =-- 7(mod 8) 
(23) 

[d is a sum of squares of three integers (Mordell, 
1969)]. From the first of these expressions it is 
concluded that there is no other condition relating 27 
and d. 

On the other hand, since (9) are undetermined for a 

1 

27 

3 2 ; -  S S - 2; 3 2 ; -  S 
u 2 - + - -  uo - -  

2d 2 2d 

327- s [(32;-  s ) ( s  + E)] v2 
uv + w 

2 d 2 v/-d 

32; -  S [(32;- S ) ( S  + 2;)11/2 
UW - -  U I)W 

2d 2 v / d  

With the following transformation, according to (10): 

S - E  3 E - S  
c o s O - - - ,  1 - c o s O =  

227 227 

1 
sin 0 = 

227 
( 3 2 ; -  S)  1/2 (S  + 27)1/2, 

the rotation matrix (8) takes the general form 

[(32;-  S ) ( S  + E)] u2 3 E -  S [(327- S ) ( S  + E)] u2 
w uw + p 

2e 

327- S S - 27 327- S [(327- S)(S + 27)]1/2 
~ + ~  OW - -U  

2d  2 2d  2 v/-d 

3 E -  S 

2d 

[(3E- S)(S + 2;)1 '/2 32;- S S - 2; 
+ u 2~x/d w 2 - - 2 d  + - - 2  

(26) 

180 ° rotation, they are replaced by the following 
expressions [(20), (21)]: 

u = [ f ( r l l  + E)] 1/2, 

w = [f(r33 + 27)11/2, 

v = [f(r2z + 27)1u2, 

(24) 

where the signs of u, v and w are deduced from 

sign (uv) = sign (r21) = sign (r12) 

sign (uw)  = sign ( r 1 3 )  = sign (r31) 

sign (vw) = sign (r32) = sign (r23). 

(25) 

The matrix (20) with the conditions (21) is the 
general form for the description of 180 ° leading to a 
CSL. It allows a direct determination of all the elements 
of the CSL. In particular, it allows, with (22), a simple 
and fast determination of all possible CSL's of a 
particular multiplicity 27 which have a 180 ° rotation 
description. 

Finally, it is possible, from the form of matrix (20), 
to propose a criterion for the recognition of a CSL 
which can be described by a rotation of 180 °. This 
criterion is a direct consequence of the symmetry 
properties discussed in § 4. 

Criterion. If a matrix R describes a CSL relation- 
ship, this CSL has a 180 ° rotation description, if R has 
at least three pairs of terms equal in absolute value. 

This expression makes use exclusively of integer 
variables (27, u, v w, S and d), so that all the terms r u 
must be integers in order to express a rotation 
describing a CSL. In this event, a new formulation of 
(26) is proposed with new parameters m, n and f 
obtained by expressing the following obvious 
properties. 

1. Since 2r t / for  i = j are integers, and since their 
second terms are integers, S - 27, their first terms must 
also be integers; taking into account (7), one concludes 
that (327- S ) / d  is an integer. 

2. The differences r u - rjt for i 4: j are also integers, 
this implies that the product ( 3 2 7 - S ) ( S  + Z3 is a 
perfect square multiple of the integer d. 

Therefore, if m and n are any integers, a n d f i s  unity 
or a square-free integer (i.e. an integer without a square 
factor), then the expressions 3 2 7 - S  and S + 27 are 
necessarily of one of the forms: 

3Z - S = f d  [ 3 E - -  S = dn 2 

S + 27= fm2 or / S  + 2 7 = m 2  
or  

327 - S = f d n  2 

S + 27= f m  2 ' 
(27) 

the last being the most general. Moreover, we have 

f ( m  2 + dn 2) =- 0(mod 4), 
(28) 

f ( 3 m  2 - dn 2) = O(mod 4), 
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since the determinant of the transformation (27) is 
equal to 4. 

With (27), (26) becomes 

I f  2 2  2 2 f f - -  - -  (2u n + m - d n  ) - -  ( 2 u r n  2 - 2 w m n )  - -  ( 2 u w n  2 + 2 v m n )  
4 4 4 

I L f "  2 f f [ q = - -  ( 2 u r n  + 2wren) - -  ( 2 v 2 n  2 + m 2 - dn 2) - -  ( 2vwn  2 - 2 u m n )  

I S 4 4 4 

~ f 2 f f 
m ( 2 u w n  - 2wnn)  - -  ( 2vwn  2 + 2umn)  - -  (2w2r /2  + m 2 - dn 2) 
4 4 4 

(29) 

and 

f 
X = ~ (m 2 + dn2). (30) 

4 

The factor 1/4 in (29) and (30) may be eliminated if 
compatibility conditions are introduced between the 
parameters m,n and the variables 22,d. This will be done 
later on. The factor f may then be considered as a 
superfluous common factor, therefore f =  1. Finally, 
the elements of the matrix (29) may have a common 
factor, which will be eliminated by introducing a new 
parameter a, which has to be determined. The relations 
(29), (30) then have the following form: 

1 [ ( 2 u 2 n 2  + m2 - dn2)/ct ( 2urn  2 - 2 w m n ) / a  (2uwn 2 + 2 v m n ) / a  ] 

[q = - -  ] ( 2 u t ' n  2 + 2wmn)/~t  (2v2n 2 + m 2 - dn2) /a  (2vwn  2 - 2 u m n ) / a  ] S [ (2uwn 2 _ 2 v m n ) / a  (2vwn  2 + 2 u m n ) / a  (2w2n 2 + m 2 - dn2) /a  

(31a) 

o r  

1 
R = - -  [r~/a] with r ~ / a :  rij , (31b) 

27 

where r~ all express integer values; a is the common 
factor of the terms r~ and 

22 = (m 2 + dn2)/a = X * / a .  (32) 

7. Definitive form of  the rotation matrix 

Expression (31) for the rotation matrix was obtained 
starting from the general form of a rotation matrix and 
based on some evident conditions that its elements are 
expressed with integer numbers. It makes exclusive use 
of the following integers: 

22, defining the multiplicity of the CSL; 
u, v and w, the Miller indices of the rotation axis, 

taking (7) into account; 
d, the square of the length of the vector [uvw]; 
m, n and a ,  three parameters; the conditions limiting 

their possible values will be established; this will allow 
the generation of all possible expressions of a CSL. 

Expression (31) satisfies two conditions presented by 
Warrington" all the elements rtj are integers (for 
compatible a values), and the three column vectors 
form an orthonormal base. It must still be noted that all 
the rtj elements have no common divisor. This 
condition will be fulfilled if the a value is the greatest 
common divisor of the elements r,~. Therefore all 
possible a values will be determined. 

In order to avoid obvious a values, we will express a 
limiting condition on the parameters m and n: 

(m,n) - 1 (33) 

since the elements r~ are homogeneous in m and n. 
A detailed analysis of the possible a values is given in 

Appendix I. The reasoning is essentially centered on the 
consideration of the non-diagonal elements. It is 
concluded that the only possible values for a are a = 1, 
2 o r 4 .  

A last analysis is still necessary in order to determine 
under which conditions these a values will be attri- 
buted. This will be given in terms of selection rules 
limiting possible a ,  m and n values for given d values. 
Their determination is given in Appendix II and 
summarized in Table 1. 

The determination of these selection rules, based on 
the condition that (32) expresses an integral 22 value, 
has shown that they are compatible with the condition 
that the elements rij of (31) are all integers. Moreover, 
it has also been proved that only the odd values of 22 
are allowed. 

Therefore, it has been proved that (31), including the 
conditions limiting the values of m, n and a [(33) and 

Allowed values of a will be determined, and the 
selection rules for the m and n values for given a and d 
values will also be established. Thereafter any CSL of a 
given 22 value is simply deduced from the relation (32) 
giving all compatible values for the four parameters m, 
n, ct and d. 

The relation (32) is more general than Ran- 
ganathan's generating function. It is a direct con- 
sequence of Warrington's approach applied to the 
matrix (26). 

Table 1. Selec t ion  rules - a values  

m = 1 ( m o d  2) 
n = 1 ( m o d  2) 

m = 0 ( m o d  2) 
n = I ( m o d  2) 

m = 1 ( m o d  2) 
n = 0 ( m o d  2) 

d = 1 ( m o d  4) d = 2 ( m o d  4) d = 3 ( m o d  4) 

2 1 4 

1 2 1 

I 1 1 
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Table 1], always describes a CSL and that any CSL 
may be expressed in that form. 

8. Determination of  CSL's in the cubic system 

Any values given to the parameters m, n and a for a 
given multiplicity 27 allow a simple and fast deter- 
mination of the rotation elements: the corresponding d 
value is given by (32) and any possible decomposition 
of d according to (6) gives the Miller indices of possible 
rotation axes. The corresponding rotation angle is given 
by the trace of the matrix (31): 

m 2 - dn  2 0 n 
cos 0 -  or t a n - = - -  v /d ;  (34) 

m 2 + dn  2 2 m 

the rotation matrix (31) is also rapidly determined. 
Reciprocally a given rotation operation, [uvw],  O, is 

rapidly converted into d , m , n  parameters according to 
(34), taking into account (33); then a is determined 
according to (32) and the rotation matrix is deter- 
mined according to (31). 

It is clear in particular that u, v and w may take any 
value compatible with Miller indices, and that m and n 
are always positive integers, since 0 < 0 < 180 °. 

An appreciable interest of this approach is direct 
access to all the symmetrically equivalent descriptions 
according to (16), since u , v , w  are introduced as 
parameters. Therefore, all the significant different 
descriptions of a particular CSL may be generated in a 
reference triangle without useless duplication (as occurs 
in Warrington's approach) stating, for example, 

u > v_> w > 0 ,  (35) 

then all compatible m , n , a , d  values will give all possible 
descriptions allowing a systematic generation of tables 
of CSL's. 

The identity is described by n = 0 (m = 1); this 
trivial case will not be considered. For m = 0 and 
n = 1, the rotation angle is 0 =  180 ° and the matrix 
(31) takes the form of the matrix (20). 

9. A systematic generation of  CSL's 

In practice, for a particular mutliplicity 27, the 
generation of all possible different descriptions of 
existing CSL's is obtained without duplication (i.e. 

there is no double description with the same rotation 
angle and a symmetrically equivalent rotation axis) by 
varying m and n from 0 to a maximum allowed value 
determined by (32) in agreement with (33). The 
corresponding d value is determined and then all its 
possible decompositions according to (6), (7) and (35). 

The role played by .the parameters m, n and a is 
illustrated in Fig. 1 for 27 values up to 27 = 35, which 

shows that the characteristic elements of rotation 
operations describing a CSL fall on lines of equal m / n  

ratios. 
An application of the method has allowed us to 

establish the list of all CSL's up to 27 < 100, where 146 
CSL's appear, from which 17 have no 180 ° des- 
cription. This list is in agreement with the list obtained 
by application of (3), but all equivalent descriptions are 
given since all significant data are rapidly determined 
with the fundamental equations (31), (32) and (34) and 
Table 1. 

10. Characterization of  a blcrystal in terms of  a CSL 

Limiting ourselves to multiplicities up to 27= 35, the 
establishment of a table of CSL's suggests a method of 
characterization of a bicrystal since all of these CSL's 
have a 180 ° description. Relations (15) and (16) allow 
one to refer a bicrystal to its greatest-rotation-angle 
description through a rotation axis situated in the 
reference triangle. A graphical determination is there- 
fore possible. Fig. 2 represents all rotation axes 
corresponding to a 180 ° rotation for CSL's with 
Z _< 3 5. The experimental rotation axis is shown on this 
stereographic projection and the deviation from an 
ideal CSL description is given by two components: the 
difference in rotation angle and the difference in 

d~ 

lot)- 

35/  35~b 35Ia 

a : 2  • 35 ~a// 'g 2~4 25~b ' 7' / j * 
80. ,* 25/ • ' 35~ a=4 • / / ,'b .=/ 3~,b 3~b 

/ " "  25/ 35 / ~ b  15r . .  ¢ 251 2~a b • /ao g_ , ¢ za ;~ go 
." • . .  / 25/ -_,b _ i 

/ / 3 5 /  / ' ~ , "  ~ ,' , d .  3~ 
," _ "  ,'~b ," ,~b ,~ I" °7 a° i~ 30. */ -/./" 25 / ,/" 35~'. 15~ 15f 

/ /  3 5 / :  ,'~ ./ I V  "~° ~:  I 2~o 
35/25/ fib / ," 35/ : {°b 5/" 

i ' b l  ~ P__I /* / b  I t '  l 171,ab 
/ /  / 2 ' i  / / 15/ 2 , /  9 /  15/ ' 

/ /  31.f 7"b l-V 2~: 11;," 17,t / 7.- l]:<, 
~312y i s i ° l  9 i  <' 171~ 51 i l l  3 i /  3 / 25' I~ i 
/~b? /*23/ 35," 13,k 19: 7' /'b llj*" Pb 
/ / 29//'17/~I 25/~ ° ~,~ 13/" / fi' " 

11 15 5 29 i " 
/ ~ 1 1 " 1 5 / b 2 1 i "  7/" 9 /"  35/29/'~/~a 3/" /°b2r b23 .' 3-' 7,:  " ' / "  ' :  " " ': 

/ / A/dill,7, / / - / , , /  " 
'1125 ' i 

9 II 3 3, 33 11_ , 9g' 22"1¢3-3 i 

b 
o i 4 - 4 , - ~ , - - i ' ~ ' - i  4 ~. ~ ~otG~ 

70" 
60, 
50. 

40. 

2 

16 

L 1:1','9876 43s72'34 , 4 3 2 3 , 3 2 ,  , , ,  o 
I 1.1 1 1 1 1 2 3  1 3 2 3  5 4 3 5  2 7 5 3  4 5 7  

Fig. 1. A graph of the d values (d = //2 -t- U 2 4- W 2, [Ill)W] is the 
rotation axis) as a function of the rotation angle, 0, showing that 
all CSL's  are described with two main parameters m and n, 
taking into account three values for the third parameter, a .  • 
a =  1;m a =  2 ; A  a = 4 .  
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rotation axis. A rigorous method has been proposed by 
Bleris, Antonopoulos, Karakostas & Delavignette 
(1981) for the calculation of this deviation. A general 
procedure for the characterization of a bicrystal in 
terms of CSL's has also been given by Bleris, Hag+ge, 
Nouet, Antonopoulos, Karakostas & Delavignette 
(1980). 

11. Conclusion 

A bridge is laid between the theories of Ranganathan 
and Warrington leading to the generalization of 
Ranganathan 's  generating function and allowing a 
simple and fast establishment of tables of CSL's in the 
cubic system. Rotation matrices describing CSL's are 
established with the parameters m,n,a. The arguments 
are general and will be applied in a future paper to the 
hexagonal system. 

A P P E N D I X  I 
Determination of  the possible • values 

The rotation matrix (31) describes a CSL of multi- 
plicity Z" if the r~j elements are relatively prime, i.e. if a 
is the common divisor of the elements r~. A generation 
of CSL's with (31) is therefore possible if the values a 
are determined. 

If a in,* then according to (32) it is concluded that 
a.lm, which is impossible according to (33); therefore it 
will be supposed that 

(a,n) - 1. (A I. i) 

*aln has the meaning 'a  divides n'. 

3xl 
ii 

41• 11 

9 

61~11 27a 
811 19a 721 

303a 27b 

732 

31b 421 

15 

s~ 
19b 

17b 33c 

5043 
25b 

1] 2 653 
29b ?Sb 

3021 
7 

4031 
531 13b 

631 ~a 5~1 

23 3la 
33b 

:oo 
13b 17a 5 29a 29a 5 17a 13a 25a 

14 Fig. 2. Stereographic projection of the 180 ° rotation axes for all 15 
CSL's up to 27 = 35 in the reference triangle (cubic system). 16 

The determination of possible a values will be based 
on the consideration of the non-diagonal elements r E 
for i 4: j. The common divisors of both terms of the 
algebraic sums of r~/2n (i 4= j)  will be considered: 

(uvn ,wm)-  Pl; (uwn,vm) --p2 and 

(vwn,um) - P3. (AI.2) 

Supposing first that at least one of these three pairs is 
relatively prime, it is known that its sum and its 
difference, which are r~/2n and r~/2n, may have only 
one common factor: the number 2. Therefore, accord- 
ing to (AI. 1), the only common divisors for r E and ~l, 
which are the only possible a values, are a. = 1, 2 or 4. 

The values of a must then be determined in the event 
that p~, P2 and P3 are all different from unity. Without 
restricting the generality, it will be supposed that Pl is 
the smallest of the three. 

A possible a value (different from 2 or 4) must 
obviously divide pl:  

a I p~ or 2Pl or 4Pl.  

Considering the corresponding relation (AI.2), we will 
show that this implies the possible occurrence of five 
different events separately or in different simultaneous 
combinations. The occurrence of all combinations of 
these events leads to an internal contradiction proving 
that the only possible a values are still in this case 1, 2 
or 4: 

El:al(n,w); E2:al(u,w); E3:al(v,w); 

E4:al(u,m); Es:al (v ,m).  (AI.3) 

[A sixth event is clearly self contradictory - E6: a l(m,n) 
- according to (33).] 

All the possible combinations of the five events are 
given in Table 2 by a Boolean representation where '1 '  
indicates that the corresponding relation (AI.3) is 
realized and '0 '  in the opposite case. 

The rejection of different combinations is based on 
four different arguments a to d. They are indicated in 
Table 2: 

Table 2. Boolean analysis with binary description for  
five events 

~ E] E 2 E 3 
27a 
331 1 I I I 3- 

2 0 I I ~ga 
3 1 0 1 

411 4 1 I 0 
33a 5 1 1 1 

6 1 I 1 
7 0 0 1 
8 0 1 0 
9 0 1 1 

10 0 1 1 
11 0 0 

1~ 12 0 1 
13 0 1 

1 0 
1 0 
I 1 

E 4 E~ Exclusions E] E 2 E 3 E 4 Es Exclusions 

1 1 a b e  17 0 0 0 1 1 c 
1 1 a e 18 0 0 1 0 1 c 
1 1 b e  19 0 0 1 1 0 e d  
1 1 b c 20 0 1 0 0 1 c d  
0 1 a b c  21 0 1 0 1 0 c 
l 0 a b c  22 0 1 1 0 0 a 
l l c 23 l 0 0 0 l b c d  
l 1 c 24 1 0 0 1 0 b c d  
0 1 a c 25 1 0 1 0 0 b d 
1 0 a c 26 1 1 0 0 0 b d 
1 1 b c 27 0 0 0 0 1 d 
0 1 b c 28 0 0 0 1 0 d 
1 0 b c d  29 0 0 1 0 0 d 
0 1 b c d  30 0 1 0 0 0 d 
1 0 b e  31 1 0 0 0 0 b 
0 0 a b 32 0 0 0 0 0 
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a: I f  E 2 and E a occur simultaneously,  then a I(u,v,w) 
is improper  because of  (7). 

b: If  E 1 occurs, a I(m,n) or a I(u,v,w) is improper  
because of (7) or (3 3). 

c: If  a divides two Miller indices, as well as m, then, 
according to (32), since it divides 27, it should divide d 
(and therefore divide the third Miller index) or divide n, 
both improper.  This excludes the following simul- 
taneous occurrences:  E 1E4, E 1 E  5, E 2 E4, E 2 E 5, E 3 E 4, 
E a E 5 and E 4 E 5. 

d: The occurrence of  one event (E 2 to Es) implies the 
occurrence of  another event according to relation 
(AI.2), improper  when labeled 0, or contradicts relation 
(33). E 2 implies E 3 or E4; E 3 implies E 2 or Es;  E 4 
implies E 2 or E 5 or contradicts (33); E 5 implies E 3 or E 4 
or contradicts (33). 

Only combinat ions  32 in Table 2 remains,  proving 
that  the only possible values for a are 1, 2 or 4. 

a =  4, 27 is odd. This a value is obviously compatible  
with ~ ,  taking into account  (AII.2). 

(II) m is even, n is odd. 
(i) d -  l (mod  4). 
F rom (32) it is concluded that 27* = 1(rood 4) -* 

a = 1, 27 is odd. 
(ii) d =- 2(mod 4). 
F rom (32) it is concluded that  27* = 2(rood 4) --, 

a = 2, 27 is odd. This a value is obviously compatible  
with r~. 

(iii) d - 3 (mod 4) --, d - 3 (mod 8). 
F rom (32) it is concluded that  27* = 3(mod 4) --, 

a = 1, 27 is odd. 

(III) m is odd, n is even. 
For  any character  of  the d value, the second term of  

(32) is 0(mod 4), since n is even, and the first term is 
1 (mod 8), therefore a = 1, 27 is odd. 

A P P E N D I X  II 
Selection rules 

Compatibi l i ty  conditions between m, n, a and d will be 
expressed in terms of  selection rules. Forbidden a 
values will be determined first considering the parity of 
the parameters  m and n [m and n even is excluded 
according to (33)], then for each case three forms of d 
are considered since d = 0(mod 4) is excluded accor- 
ding to (23). Use is made of the well known property:  

i f p  is any integer (2p + 1) 2 - l (mod  8). (Al l . I )  

Also, we will use: 

if d = 3 (mod 4) then u, v and w are all odd 

and d = 3(mod 8). (AII.2) 

(I) m and n are odd. 
(i) d -  l ( m o d  4). 
F rom (32) it is concluded that 27* - 2(mod 4) 

a =  2, 27 is odd. This a value is compatible  with r E (in 
particular this becomes obvious for the rti elements 
after the substitution m 2 = 2 2 7 -  dn2). 

(ii) d = 2(mod 4). 
F rom (32) it is concluded that 27" - 3(mod 4) --, 

a = 1, 27 is odd. 
(iii) d - 3(mod 4), according to (AII.2) 

d -  3(mod 8). 
F rom (32) it is concluded that  27* = 4(mod 8) --, 

Conclusion 

Selection rules have been established. They also 
allow one to prove that  27 is a lways odd. 
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